Being able to calculate paths is now a property of fighting entities.
This commit is contained in:
parent
a3e059a97b
commit
8ecbf13eae
@ -1,8 +1,6 @@
|
||||
# Copyright (C) 2020 by ÿnérant, eichhornchen, nicomarg, charlse
|
||||
# SPDX-License-Identifier: GPL-3.0-or-later
|
||||
|
||||
from functools import reduce
|
||||
from queue import PriorityQueue
|
||||
from random import randint
|
||||
from typing import Dict, Tuple
|
||||
|
||||
@ -15,7 +13,6 @@ class Player(InventoryHolder, FightingEntity):
|
||||
"""
|
||||
current_xp: int = 0
|
||||
max_xp: int = 10
|
||||
paths: Dict[Tuple[int, int], Tuple[int, int]]
|
||||
|
||||
def __init__(self, name: str = "player", maxhealth: int = 20,
|
||||
strength: int = 5, intelligence: int = 1, charisma: int = 1,
|
||||
@ -87,55 +84,6 @@ class Player(InventoryHolder, FightingEntity):
|
||||
entity.hold(self)
|
||||
return super().check_move(y, x, move_if_possible)
|
||||
|
||||
def recalculate_paths(self, max_distance: int = 8) -> None:
|
||||
"""
|
||||
Uses Dijkstra algorithm to calculate best paths for monsters to go to
|
||||
the player.
|
||||
"""
|
||||
distances = []
|
||||
predecessors = []
|
||||
# four Dijkstras, one for each adjacent tile
|
||||
for dir_y, dir_x in [(1, 0), (-1, 0), (0, 1), (0, -1)]:
|
||||
queue = PriorityQueue()
|
||||
new_y, new_x = self.y + dir_y, self.x + dir_x
|
||||
if not 0 <= new_y < self.map.height or \
|
||||
not 0 <= new_x < self.map.width or \
|
||||
not self.map.tiles[new_y][new_x].can_walk():
|
||||
continue
|
||||
queue.put(((1, 0), (new_y, new_x)))
|
||||
visited = [(self.y, self.x)]
|
||||
distances.append({(self.y, self.x): (0, 0), (new_y, new_x): (1, 0)})
|
||||
predecessors.append({(new_y, new_x): (self.y, self.x)})
|
||||
while not queue.empty():
|
||||
dist, (y, x) = queue.get()
|
||||
if dist[0] >= max_distance or (y, x) in visited:
|
||||
continue
|
||||
visited.append((y, x))
|
||||
for diff_y, diff_x in [(1, 0), (-1, 0), (0, 1), (0, -1)]:
|
||||
new_y, new_x = y + diff_y, x + diff_x
|
||||
if not 0 <= new_y < self.map.height or \
|
||||
not 0 <= new_x < self.map.width or \
|
||||
not self.map.tiles[new_y][new_x].can_walk():
|
||||
continue
|
||||
new_distance = (dist[0] + 1,
|
||||
dist[1] + (not self.map.is_free(y, x)))
|
||||
if not (new_y, new_x) in distances[-1] or \
|
||||
distances[-1][(new_y, new_x)] > new_distance:
|
||||
predecessors[-1][(new_y, new_x)] = (y, x)
|
||||
distances[-1][(new_y, new_x)] = new_distance
|
||||
queue.put((new_distance, (new_y, new_x)))
|
||||
# For each tile that is reached by at least one Dijkstra, sort the
|
||||
# different paths by distance to the player. For the technical bits :
|
||||
# The reduce function is a fold starting on the first element of the
|
||||
# iterable, and we associate the points to their distance, sort
|
||||
# along the distance, then only keep the points.
|
||||
self.paths = {}
|
||||
for y, x in reduce(set.union,
|
||||
[set(p.keys()) for p in predecessors], set()):
|
||||
self.paths[(y, x)] = [p for d, p in sorted(
|
||||
[(distances[i][(y, x)], predecessors[i][(y, x)])
|
||||
for i in range(len(distances)) if (y, x) in predecessors[i]])]
|
||||
|
||||
def save_state(self) -> dict:
|
||||
"""
|
||||
Saves the state of the entity into a dictionary
|
||||
|
@ -4,7 +4,9 @@
|
||||
from enum import Enum, auto
|
||||
from math import sqrt
|
||||
from random import choice, randint
|
||||
from typing import List, Optional, Any
|
||||
from typing import List, Optional, Any, Dict, Tuple
|
||||
from queue import PriorityQueue
|
||||
from functools import reduce
|
||||
|
||||
from .display.texturepack import TexturePack
|
||||
from .translations import gettext as _
|
||||
@ -237,6 +239,7 @@ class Entity:
|
||||
x: int
|
||||
name: str
|
||||
map: Map
|
||||
paths: Dict[Tuple[int, int], Tuple[int, int]]
|
||||
|
||||
# noinspection PyShadowingBuiltins
|
||||
def __init__(self, y: int = 0, x: int = 0, name: Optional[str] = None,
|
||||
@ -245,6 +248,7 @@ class Entity:
|
||||
self.x = x
|
||||
self.name = name
|
||||
self.map = map
|
||||
self.paths = None
|
||||
|
||||
def check_move(self, y: int, x: int, move_if_possible: bool = False)\
|
||||
-> bool:
|
||||
@ -292,6 +296,57 @@ class Entity:
|
||||
return self.move(self.y, self.x + 1) if force else \
|
||||
self.check_move(self.y, self.x + 1, True)
|
||||
|
||||
def recalculate_paths(self, max_distance: int = 8) -> None:
|
||||
"""
|
||||
Uses Dijkstra algorithm to calculate best paths for other entities to
|
||||
go to this entity. If self.paths is None, does nothing.
|
||||
"""
|
||||
if self.paths == None :
|
||||
return
|
||||
distances = []
|
||||
predecessors = []
|
||||
# four Dijkstras, one for each adjacent tile
|
||||
for dir_y, dir_x in [(1, 0), (-1, 0), (0, 1), (0, -1)]:
|
||||
queue = PriorityQueue()
|
||||
new_y, new_x = self.y + dir_y, self.x + dir_x
|
||||
if not 0 <= new_y < self.map.height or \
|
||||
not 0 <= new_x < self.map.width or \
|
||||
not self.map.tiles[new_y][new_x].can_walk():
|
||||
continue
|
||||
queue.put(((1, 0), (new_y, new_x)))
|
||||
visited = [(self.y, self.x)]
|
||||
distances.append({(self.y, self.x): (0, 0), (new_y, new_x): (1, 0)})
|
||||
predecessors.append({(new_y, new_x): (self.y, self.x)})
|
||||
while not queue.empty():
|
||||
dist, (y, x) = queue.get()
|
||||
if dist[0] >= max_distance or (y, x) in visited:
|
||||
continue
|
||||
visited.append((y, x))
|
||||
for diff_y, diff_x in [(1, 0), (-1, 0), (0, 1), (0, -1)]:
|
||||
new_y, new_x = y + diff_y, x + diff_x
|
||||
if not 0 <= new_y < self.map.height or \
|
||||
not 0 <= new_x < self.map.width or \
|
||||
not self.map.tiles[new_y][new_x].can_walk():
|
||||
continue
|
||||
new_distance = (dist[0] + 1,
|
||||
dist[1] + (not self.map.is_free(y, x)))
|
||||
if not (new_y, new_x) in distances[-1] or \
|
||||
distances[-1][(new_y, new_x)] > new_distance:
|
||||
predecessors[-1][(new_y, new_x)] = (y, x)
|
||||
distances[-1][(new_y, new_x)] = new_distance
|
||||
queue.put((new_distance, (new_y, new_x)))
|
||||
# For each tile that is reached by at least one Dijkstra, sort the
|
||||
# different paths by distance to the player. For the technical bits :
|
||||
# The reduce function is a fold starting on the first element of the
|
||||
# iterable, and we associate the points to their distance, sort
|
||||
# along the distance, then only keep the points.
|
||||
self.paths = {}
|
||||
for y, x in reduce(set.union,
|
||||
[set(p.keys()) for p in predecessors], set()):
|
||||
self.paths[(y, x)] = [p for d, p in sorted(
|
||||
[(distances[i][(y, x)], predecessors[i][(y, x)])
|
||||
for i in range(len(distances)) if (y, x) in predecessors[i]])]
|
||||
|
||||
def act(self, m: Map) -> None:
|
||||
"""
|
||||
Defines the action the entity will do at each tick.
|
||||
|
Loading…
Reference in New Issue
Block a user