1
0
mirror of https://gitlab.crans.org/bde/nk20 synced 2025-01-23 08:31:17 +00:00

Préparation WEI 2023

This commit is contained in:
charliep 2023-07-04 18:23:43 +02:00
parent d5819ac562
commit 52fef1df42
3 changed files with 408 additions and 2 deletions

View File

@ -2,11 +2,11 @@
# SPDX-License-Identifier: GPL-3.0-or-later
from .base import WEISurvey, WEISurveyInformation, WEISurveyAlgorithm
from .wei2022 import WEISurvey2022
from .wei2023 import WEISurvey2023
__all__ = [
'WEISurvey', 'WEISurveyInformation', 'WEISurveyAlgorithm', 'CurrentSurvey',
]
CurrentSurvey = WEISurvey2022
CurrentSurvey = WEISurvey2023

View File

@ -0,0 +1,296 @@
# Copyright (C) 2018-2023 by BDE ENS Paris-Saclay
# SPDX-License-Identifier: GPL-3.0-or-later
import time
from functools import lru_cache
from random import Random
from django import forms
from django.db import transaction
from django.db.models import Q
from django.utils.translation import gettext_lazy as _
from .base import WEISurvey, WEISurveyInformation, WEISurveyAlgorithm, WEIBusInformation
from ...models import WEIMembership
WORDS = [
'ABBA', 'After', 'Alcoolique anonyme', 'Ambiance festive', 'Années 2000', 'Apéro', 'Art',
'Baby foot billard biere pong', 'BBQ', 'Before', 'Bière pong', 'Bon enfant', 'Calme', 'Canapé',
'Chanson paillarde', 'Chanson populaire', 'Chartreuse', 'Cheerleader', 'Chill', 'Choré',
'Cinéma', 'Cocktail', 'Comédie musicle', 'Commercial', 'Copaing', 'Danse', 'Dancefloor',
'Electro', 'Fanfare', 'Gin tonic', 'Inclusif', 'Jazz', "Jeux d'alcool", 'Jeux de carte',
'Jeux de rôle', 'Jeux de société', 'JUL', 'Jus de fruit', 'Kfet', 'Kleptomanie assurée',
'LGBTQ+', 'Livre', 'Morning beer', 'Musique', 'NAPS', 'Paillettes', 'Pastis', 'Paté Hénaff',
'Peluche', 'Pena baiona', "Peu d'alcool", 'Pilier de bar', 'PMU', 'Poulpe', 'Punch', 'Rap',
'Réveil', 'Rock', 'Rugby', 'Sandwich', 'Serge', 'Shot', 'Sociable', 'Spectacle', 'Techno',
'Techno house', 'Thérapie Taxi', 'Tradition kchanaises', 'Troisième mi-temps', 'Turn up',
'Vodka', 'Vodka pomme', 'Volley', 'Vomi stratégique'
]
class WEISurveyForm2023(forms.Form):
"""
Survey form for the year 2023.
Members choose 20 words, from which we calculate the best associated bus.
"""
word = forms.ChoiceField(
label=_("Choose a word:"),
widget=forms.RadioSelect(),
)
def set_registration(self, registration):
"""
Filter the bus selector with the buses of the current WEI.
"""
information = WEISurveyInformation2023(registration)
if not information.seed:
information.seed = int(1000 * time.time())
information.save(registration)
registration._force_save = True
registration.save()
if self.data:
self.fields["word"].choices = [(w, w) for w in WORDS]
if self.is_valid():
return
rng = Random((information.step + 1) * information.seed)
words = None
buses = WEISurveyAlgorithm2023.get_buses()
informations = {bus: WEIBusInformation2023(bus) for bus in buses}
scores = sum((list(informations[bus].scores.values()) for bus in buses), [])
average_score = sum(scores) / len(scores)
preferred_words = {bus: [word for word in WORDS
if informations[bus].scores[word] >= average_score]
for bus in buses}
while words is None or len(set(words)) != len(words):
# Ensure that there is no the same word 2 times
words = [rng.choice(words) for _ignored2, words in preferred_words.items()]
rng.shuffle(words)
words = [(w, w) for w in words]
self.fields["word"].choices = words
class WEIBusInformation2023(WEIBusInformation):
"""
For each word, the bus has a score
"""
scores: dict
def __init__(self, bus):
self.scores = {}
for word in WORDS:
self.scores[word] = 0.0
super().__init__(bus)
class WEISurveyInformation2023(WEISurveyInformation):
"""
We store the id of the selected bus. We store only the name, but is not used in the selection:
that's only for humans that try to read data.
"""
# Random seed that is stored at the first time to ensure that words are generated only once
seed = 0
step = 0
def __init__(self, registration):
for i in range(1, 21):
setattr(self, "word" + str(i), None)
super().__init__(registration)
class WEISurvey2023(WEISurvey):
"""
Survey for the year 2023.
"""
@classmethod
def get_year(cls):
return 2023
@classmethod
def get_survey_information_class(cls):
return WEISurveyInformation2023
def get_form_class(self):
return WEISurveyForm2023
def update_form(self, form):
"""
Filter the bus selector with the buses of the WEI.
"""
form.set_registration(self.registration)
@transaction.atomic
def form_valid(self, form):
word = form.cleaned_data["word"]
self.information.step += 1
setattr(self.information, "word" + str(self.information.step), word)
self.save()
@classmethod
def get_algorithm_class(cls):
return WEISurveyAlgorithm2023
def is_complete(self) -> bool:
"""
The survey is complete once the bus is chosen.
"""
return self.information.step == 20
@classmethod
@lru_cache()
def word_mean(cls, word):
"""
Calculate the mid-score given by all buses.
"""
buses = cls.get_algorithm_class().get_buses()
return sum([cls.get_algorithm_class().get_bus_information(bus).scores[word] for bus in buses]) / buses.count()
@lru_cache()
def score(self, bus):
if not self.is_complete():
raise ValueError("Survey is not ended, can't calculate score")
bus_info = self.get_algorithm_class().get_bus_information(bus)
# Score is the given score by the bus subtracted to the mid-score of the buses.
s = sum(bus_info.scores[getattr(self.information, 'word' + str(i))]
- self.word_mean(getattr(self.information, 'word' + str(i))) for i in range(1, 21)) / 20
return s
@lru_cache()
def scores_per_bus(self):
return {bus: self.score(bus) for bus in self.get_algorithm_class().get_buses()}
@lru_cache()
def ordered_buses(self):
values = list(self.scores_per_bus().items())
values.sort(key=lambda item: -item[1])
return values
@classmethod
def clear_cache(cls):
cls.word_mean.cache_clear()
return super().clear_cache()
class WEISurveyAlgorithm2023(WEISurveyAlgorithm):
"""
The algorithm class for the year 2023.
We use Gale-Shapley algorithm to attribute 1y students into buses.
"""
@classmethod
def get_survey_class(cls):
return WEISurvey2023
@classmethod
def get_bus_information_class(cls):
return WEIBusInformation2023
def run_algorithm(self, display_tqdm=False):
"""
Gale-Shapley algorithm implementation.
We modify it to allow buses to have multiple "weddings".
"""
surveys = list(self.get_survey_class()(r) for r in self.get_registrations()) # All surveys
surveys = [s for s in surveys if s.is_complete()] # Don't consider invalid surveys
# Don't manage hardcoded people
surveys = [s for s in surveys if not hasattr(s.information, 'hardcoded') or not s.information.hardcoded]
# Reset previous algorithm run
for survey in surveys:
survey.free()
survey.save()
non_men = [s for s in surveys if s.registration.gender != 'male']
men = [s for s in surveys if s.registration.gender == 'male']
quotas = {}
registrations = self.get_registrations()
non_men_total = registrations.filter(~Q(gender='male')).count()
for bus in self.get_buses():
free_seats = bus.size - WEIMembership.objects.filter(bus=bus, registration__first_year=False).count()
# Remove hardcoded people
free_seats -= WEIMembership.objects.filter(bus=bus, registration__first_year=True,
registration__information_json__icontains="hardcoded").count()
quotas[bus] = 4 + int(non_men_total / registrations.count() * free_seats)
tqdm_obj = None
if display_tqdm:
from tqdm import tqdm
tqdm_obj = tqdm(total=len(non_men), desc="Non-hommes")
# Repartition for non men people first
self.make_repartition(non_men, quotas, tqdm_obj=tqdm_obj)
quotas = {}
for bus in self.get_buses():
free_seats = bus.size - WEIMembership.objects.filter(bus=bus, registration__first_year=False).count()
free_seats -= sum(1 for s in non_men if s.information.selected_bus_pk == bus.pk)
# Remove hardcoded people
free_seats -= WEIMembership.objects.filter(bus=bus, registration__first_year=True,
registration__information_json__icontains="hardcoded").count()
quotas[bus] = free_seats
if display_tqdm:
tqdm_obj.close()
from tqdm import tqdm
tqdm_obj = tqdm(total=len(men), desc="Hommes")
self.make_repartition(men, quotas, tqdm_obj=tqdm_obj)
if display_tqdm:
tqdm_obj.close()
# Clear cache information after running algorithm
WEISurvey2023.clear_cache()
def make_repartition(self, surveys, quotas=None, tqdm_obj=None):
free_surveys = surveys.copy() # Remaining surveys
while free_surveys: # Some students are not affected
survey = free_surveys[0]
buses = survey.ordered_buses() # Preferences of the student
for bus, current_score in buses:
if self.get_bus_information(bus).has_free_seats(surveys, quotas):
# Selected bus has free places. Put student in the bus
survey.select_bus(bus)
survey.save()
free_surveys.remove(survey)
break
else:
# Current bus has not enough places. Remove the least preferred student from the bus if existing
least_preferred_survey = None
least_score = -1
# Find the least student in the bus that has a lower score than the current student
for survey2 in surveys:
if not survey2.information.valid or survey2.information.get_selected_bus() != bus:
continue
score2 = survey2.score(bus)
if current_score <= score2: # Ignore better students
continue
if least_preferred_survey is None or score2 < least_score:
least_preferred_survey = survey2
least_score = score2
if least_preferred_survey is not None:
# Remove the least student from the bus and put the current student in.
# If it does not exist, choose the next bus.
least_preferred_survey.free()
least_preferred_survey.save()
free_surveys.append(least_preferred_survey)
survey.select_bus(bus)
survey.save()
free_surveys.remove(survey)
break
else:
raise ValueError(f"User {survey.registration.user} has no free seat")
if tqdm_obj is not None:
tqdm_obj.n = len(surveys) - len(free_surveys)
tqdm_obj.refresh()

View File

@ -0,0 +1,110 @@
# Copyright (C) 2018-2023 by BDE ENS Paris-Saclay
# SPDX-License-Identifier: GPL-3.0-or-later
import random
from django.contrib.auth.models import User
from django.test import TestCase
from ..forms.surveys.wei2023 import WEIBusInformation2023, WEISurvey2023, WORDS, WEISurveyInformation2023
from ..models import Bus, WEIClub, WEIRegistration
class TestWEIAlgorithm(TestCase):
"""
Run some tests to ensure that the WEI algorithm is working well.
"""
fixtures = ('initial',)
def setUp(self):
"""
Create some test data, with one WEI and 10 buses with random score attributions.
"""
self.wei = WEIClub.objects.create(
name="WEI 2023",
email="wei2023@example.com",
date_start='2023-09-16',
date_end='2023-09-18',
year=2023,
)
self.buses = []
for i in range(10):
bus = Bus.objects.create(wei=self.wei, name=f"Bus {i}", size=10)
self.buses.append(bus)
information = WEIBusInformation2023(bus)
for word in WORDS:
information.scores[word] = random.randint(0, 101)
information.save()
bus.save()
def test_survey_algorithm_small(self):
"""
There are only a few people in each bus, ensure that each person has its best bus
"""
# Add a few users
for i in range(10):
user = User.objects.create(username=f"user{i}")
registration = WEIRegistration.objects.create(
user=user,
wei=self.wei,
first_year=True,
birth_date='2000-01-01',
)
information = WEISurveyInformation2023(registration)
for j in range(1, 21):
setattr(information, f'word{j}', random.choice(WORDS))
information.step = 20
information.save(registration)
registration.save()
# Run algorithm
WEISurvey2023.get_algorithm_class()().run_algorithm()
# Ensure that everyone has its first choice
for r in WEIRegistration.objects.filter(wei=self.wei).all():
survey = WEISurvey2023(r)
preferred_bus = survey.ordered_buses()[0][0]
chosen_bus = survey.information.get_selected_bus()
self.assertEqual(preferred_bus, chosen_bus)
def test_survey_algorithm_full(self):
"""
Buses are full of first year people, ensure that they are happy
"""
# Add a lot of users
for i in range(95):
user = User.objects.create(username=f"user{i}")
registration = WEIRegistration.objects.create(
user=user,
wei=self.wei,
first_year=True,
birth_date='2000-01-01',
)
information = WEISurveyInformation2023(registration)
for j in range(1, 21):
setattr(information, f'word{j}', random.choice(WORDS))
information.step = 20
information.save(registration)
registration.save()
# Run algorithm
WEISurvey2023.get_algorithm_class()().run_algorithm()
penalty = 0
# Ensure that everyone seems to be happy
# We attribute a penalty for each user that didn't have its first choice
# The penalty is the square of the distance between the score of the preferred bus
# and the score of the attributed bus
# We consider it acceptable if the mean of this distance is lower than 5 %
for r in WEIRegistration.objects.filter(wei=self.wei).all():
survey = WEISurvey2023(r)
chosen_bus = survey.information.get_selected_bus()
buses = survey.ordered_buses()
score = min(v for bus, v in buses if bus == chosen_bus)
max_score = buses[0][1]
penalty += (max_score - score) ** 2
self.assertLessEqual(max_score - score, 25) # Always less than 25 % of tolerance
self.assertLessEqual(penalty / 100, 25) # Tolerance of 5 %