# Copyright (C) 2020 by ÿnérant, eichhornchen, nicomarg, charlse # SPDX-License-Identifier: GPL-3.0-or-later from functools import reduce from queue import PriorityQueue from random import randint from typing import Dict, Tuple from ..interfaces import FightingEntity, InventoryHolder class Player(InventoryHolder, FightingEntity): """ The class of the player. """ current_xp: int = 0 max_xp: int = 10 paths: Dict[Tuple[int, int], Tuple[int, int]] def __init__(self, name: str = "player", maxhealth: int = 20, strength: int = 5, intelligence: int = 1, charisma: int = 1, dexterity: int = 1, constitution: int = 1, level: int = 1, current_xp: int = 0, max_xp: int = 10, inventory: list = None, hazel: int = 42, *args, **kwargs) \ -> None: super().__init__(name=name, maxhealth=maxhealth, strength=strength, intelligence=intelligence, charisma=charisma, dexterity=dexterity, constitution=constitution, level=level, *args, **kwargs) self.current_xp = current_xp self.max_xp = max_xp self.inventory = self.translate_inventory(inventory or []) self.paths = dict() self.hazel = hazel def move(self, y: int, x: int) -> None: """ Moves the view of the map (the point on which the camera is centered) according to the moves of the player. """ super().move(y, x) self.map.currenty = y self.map.currentx = x self.recalculate_paths() def level_up(self) -> None: """ Add as many levels as possible to the player. """ while self.current_xp > self.max_xp: self.level += 1 self.current_xp -= self.max_xp self.max_xp = self.level * 10 self.health = self.maxhealth self.strength = self.strength + 1 # TODO Remove it, that's only fun self.map.spawn_random_entities(randint(3 * self.level, 10 * self.level)) def add_xp(self, xp: int) -> None: """ Adds some experience to the player. If the required amount is reached, the player levels up. """ self.current_xp += xp self.level_up() # noinspection PyTypeChecker,PyUnresolvedReferences def check_move(self, y: int, x: int, move_if_possible: bool = False) \ -> bool: """ If the player tries to move but a fighting entity is there, the player fights this entity. If the entity dies, the player is rewarded with some XP """ # Don't move if we are dead if self.dead: return False for entity in self.map.entities: if entity.y == y and entity.x == x: if entity.is_fighting_entity(): self.map.logs.add_message(self.hit(entity)) if entity.dead: self.add_xp(randint(3, 7)) return True elif entity.is_item(): entity.hold(self) return super().check_move(y, x, move_if_possible) def recalculate_paths(self, max_distance: int = 8) -> None: """ Uses Dijkstra algorithm to calculate best paths for monsters to go to the player. """ distances = [] predecessors = [] # four Dijkstras, one for each adjacent tile for dir_y, dir_x in [(1, 0), (-1, 0), (0, 1), (0, -1)]: queue = PriorityQueue() new_y, new_x = self.y + dir_y, self.x + dir_x if not 0 <= new_y < self.map.height or \ not 0 <= new_x < self.map.width or \ not self.map.tiles[new_y][new_x].can_walk(): continue queue.put(((1, 0), (new_y, new_x))) visited = [(self.y, self.x)] distances.append({(self.y, self.x): (0, 0), (new_y, new_x): (1, 0)}) predecessors.append({(new_y, new_x): (self.y, self.x)}) while not queue.empty(): dist, (y, x) = queue.get() if dist[0] >= max_distance or (y, x) in visited: continue visited.append((y, x)) for diff_y, diff_x in [(1, 0), (-1, 0), (0, 1), (0, -1)]: new_y, new_x = y + diff_y, x + diff_x if not 0 <= new_y < self.map.height or \ not 0 <= new_x < self.map.width or \ not self.map.tiles[new_y][new_x].can_walk(): continue new_distance = (dist[0] + 1, dist[1] + (not self.map.is_free(y, x))) if not (new_y, new_x) in distances[-1] or \ distances[-1][(new_y, new_x)] > new_distance: predecessors[-1][(new_y, new_x)] = (y, x) distances[-1][(new_y, new_x)] = new_distance queue.put((new_distance, (new_y, new_x))) # For each tile that is reached by at least one Dijkstra, sort the # different paths by distance to the player. For the technical bits : # The reduce function is a fold starting on the first element of the # iterable, and we associate the points to their distance, sort # along the distance, then only keep the points. self.paths = {} for y, x in reduce(set.union, [set(p.keys()) for p in predecessors], set()): self.paths[(y, x)] = [p for d, p in sorted( [(distances[i][(y, x)], predecessors[i][(y, x)]) for i in range(len(distances)) if (y, x) in predecessors[i]])] def save_state(self) -> dict: """ Saves the state of the entity into a dictionary """ d = super().save_state() d["current_xp"] = self.current_xp d["max_xp"] = self.max_xp return d