Doors #156
|
@ -26,8 +26,11 @@ DEFAULT_PARAMS = {
|
||||||
"spawn_per_region": [1, 2],
|
"spawn_per_region": [1, 2],
|
||||||
}
|
}
|
||||||
|
|
||||||
|
def dist(level, y1, x1, y2, x2):
|
||||||
def dist(level: List[List[Tile]], y1: int, x1: int, y2: int, x2: int) -> int:
|
"""
|
||||||
|
Compute the minimum walking distance between points (y1, x1) and (y2, x2) on a Tile grid
|
||||||
|
"""
|
||||||
|
# simple breadth first search
|
||||||
copy = [[t for t in row] for row in level]
|
copy = [[t for t in row] for row in level]
|
||||||
dist = -1
|
dist = -1
|
||||||
queue, next_queue = [[y1, x1]], [0]
|
queue, next_queue = [[y1, x1]], [0]
|
||||||
|
@ -56,12 +59,19 @@ class Generator:
|
||||||
def room_fits(level: List[List[Tile]], y: int, x: int,
|
def room_fits(level: List[List[Tile]], y: int, x: int,
|
||||||
room: List[List[Tile]], door_y: int, door_x: int,
|
room: List[List[Tile]], door_y: int, door_x: int,
|
||||||
dy: int, dx: int) -> bool:
|
dy: int, dx: int) -> bool:
|
||||||
|
"""
|
||||||
|
Using point (door_y, door_x) in the room as a reference and placing it
|
||||||
|
over point (y, x) in the level, returns whether or not the room fits
|
||||||
|
here
|
||||||
|
"""
|
||||||
lh, lw = len(level), len(level[0])
|
lh, lw = len(level), len(level[0])
|
||||||
rh, rw = len(room), len(room[0])
|
rh, rw = len(room), len(room[0])
|
||||||
if not(0 < y + dy < lh and 0 < x + dx < lw):
|
if not(0 < y + dy < lh and 0 < x + dx < lw):
|
||||||
return False
|
return False
|
||||||
|
# door must be placed on an empty tile, and point into a floor tile
|
||||||
if level[y][x] != Tile.EMPTY or level[y + dy][x + dx] != Tile.FLOOR:
|
if level[y][x] != Tile.EMPTY or level[y + dy][x + dx] != Tile.FLOOR:
|
||||||
return False
|
return False
|
||||||
|
# now we verify floor tiles in both grids do not overlap
|
||||||
for ry in range(rh):
|
for ry in range(rh):
|
||||||
for rx in range(rw):
|
for rx in range(rw):
|
||||||
if room[ry][rx] == Tile.FLOOR:
|
if room[ry][rx] == Tile.FLOOR:
|
||||||
|
@ -82,6 +92,10 @@ class Generator:
|
||||||
@staticmethod
|
@staticmethod
|
||||||
def place_room(level: List[List[Tile]], y: int, x: int,
|
def place_room(level: List[List[Tile]], y: int, x: int,
|
||||||
room: List[List[Tile]], door_y: int, door_x: int) -> None:
|
room: List[List[Tile]], door_y: int, door_x: int) -> None:
|
||||||
|
"""
|
||||||
|
Mutates level in place to add the room. Placement is determined by
|
||||||
|
making (door_y, door_x) in the room correspond with (y, x) in the level
|
||||||
|
"""
|
||||||
rh, rw = len(room), len(room[0])
|
rh, rw = len(room), len(room[0])
|
||||||
level[y][x] = Tile.DOOR
|
level[y][x] = Tile.DOOR
|
||||||
for ry in range(rh):
|
for ry in range(rh):
|
||||||
|
@ -91,12 +105,20 @@ class Generator:
|
||||||
|
|
||||||
@staticmethod
|
@staticmethod
|
||||||
def add_loop(level: List[List[Tile]], y: int, x: int) -> bool:
|
def add_loop(level: List[List[Tile]], y: int, x: int) -> bool:
|
||||||
|
"""
|
||||||
|
Try to add a corridor between two far apart floor tiles, passing
|
||||||
|
through point (y, x).
|
||||||
|
"""
|
||||||
h, w = len(level), len(level[0])
|
h, w = len(level), len(level[0])
|
||||||
|
|
||||||
if level[y][x] != Tile.EMPTY:
|
if level[y][x] != Tile.EMPTY:
|
||||||
return False
|
return False
|
||||||
# loop over both axis
|
|
||||||
|
# loop over both directions, trying to place both veritcal
|
||||||
|
# and horizontal corridors
|
||||||
for dx, dy in [[0, 1], [1, 0]]:
|
for dx, dy in [[0, 1], [1, 0]]:
|
||||||
# then we find two floor tiles, exiting if we ever move oob
|
# then we find two floor tiles, one on each side of (y, x)
|
||||||
|
# exiting if we don't find two (reach the edge of the map before)
|
||||||
y1, x1, y2, x2 = y, x, y, x
|
y1, x1, y2, x2 = y, x, y, x
|
||||||
while x1 >= 0 and y1 >= 0 and level[y1][x1] == Tile.EMPTY:
|
while x1 >= 0 and y1 >= 0 and level[y1][x1] == Tile.EMPTY:
|
||||||
y1, x1 = y1 - dy, x1 - dx
|
y1, x1 = y1 - dy, x1 - dx
|
||||||
|
@ -105,9 +127,10 @@ class Generator:
|
||||||
if not(0 <= x1 <= x2 < w and 0 <= y1 <= y2 < h):
|
if not(0 <= x1 <= x2 < w and 0 <= y1 <= y2 < h):
|
||||||
continue
|
continue
|
||||||
|
|
||||||
# if adding the path would make the two tiles significantly closer
|
|
||||||
# and its sides don't touch already placed terrain, build it
|
|
||||||
def verify_sides() -> bool:
|
def verify_sides() -> bool:
|
||||||
|
# switching up dy and dx here pivots the axis, so
|
||||||
|
# (y+dx, x+dy) and (y-dx, x-dy) are the tiles adjacent to
|
||||||
|
# (y, x), but not on the original axis
|
||||||
for delta_x, delta_y in [[dy, dx], [-dy, -dx]]:
|
for delta_x, delta_y in [[dy, dx], [-dy, -dx]]:
|
||||||
for i in range(1, y2 - y1 + x2 - x1):
|
for i in range(1, y2 - y1 + x2 - x1):
|
||||||
if not (0 <= y1 + delta_y + i * dy < h
|
if not (0 <= y1 + delta_y + i * dy < h
|
||||||
|
@ -117,6 +140,8 @@ class Generator:
|
||||||
.can_walk():
|
.can_walk():
|
||||||
return False
|
return False
|
||||||
return True
|
return True
|
||||||
|
# if adding the path would make the two tiles significantly closer
|
||||||
|
# and its sides don't touch already placed terrain, build it
|
||||||
if dist(level, y1, x1, y2, x2) < 20 and verify_sides():
|
if dist(level, y1, x1, y2, x2) < 20 and verify_sides():
|
||||||
y, x = y1 + dy, x1 + dx
|
y, x = y1 + dy, x1 + dx
|
||||||
while level[y][x] == Tile.EMPTY:
|
while level[y][x] == Tile.EMPTY:
|
||||||
|
@ -127,6 +152,10 @@ class Generator:
|
||||||
|
|
||||||
@staticmethod
|
@staticmethod
|
||||||
def place_walls(level: List[List[Tile]]) -> None:
|
def place_walls(level: List[List[Tile]]) -> None:
|
||||||
|
"""
|
||||||
|
Place wall tiles on every empty tile that is adjacent (in the largest
|
||||||
|
sense), to a floor tile
|
||||||
|
"""
|
||||||
h, w = len(level), len(level[0])
|
h, w = len(level), len(level[0])
|
||||||
for y in range(h):
|
for y in range(h):
|
||||||
for x in range(w):
|
for x in range(w):
|
||||||
|
@ -136,11 +165,25 @@ class Generator:
|
||||||
level[ny][nx] = Tile.WALL
|
level[ny][nx] = Tile.WALL
|
||||||
|
|
||||||
def corr_meta_info(self) -> Tuple[int, int, int, int]:
|
def corr_meta_info(self) -> Tuple[int, int, int, int]:
|
||||||
|
"""
|
||||||
|
Return info about the extra grid space that should be allocated for the
|
||||||
|
room, and where the room should be built along this extra grid space.
|
||||||
|
Because grids are usually thight around the room, this gives us extra
|
||||||
|
place to add a corridor later. Corridor length and orientation is
|
||||||
|
implicitly derived from this info.
|
||||||
|
|
||||||
|
h_sup and w_sup represent the extra needed space along each axis,
|
||||||
|
and h_off and w_off are the offset at which to build the room
|
||||||
|
"""
|
||||||
if random() < self.params["corridor_chance"]:
|
if random() < self.params["corridor_chance"]:
|
||||||
h_sup = randint(self.params["min_v_corr"],
|
h_sup = randint(self.params["min_v_corr"],
|
||||||
self.params["max_v_corr"]) if random() < .5 else 0
|
self.params["max_v_corr"]) if random() < .5 else 0
|
||||||
|
# we only allow extra space allocation along one axis,
|
||||||
|
# because there won't more than one exit corridor
|
||||||
w_sup = 0 if h_sup else randint(self.params["min_h_corr"],
|
w_sup = 0 if h_sup else randint(self.params["min_h_corr"],
|
||||||
self.params["max_h_corr"])
|
self.params["max_h_corr"])
|
||||||
|
# implicitly choose which direction along the axis
|
||||||
|
# the corridor will be pointing to
|
||||||
h_off = h_sup if random() < .5 else 0
|
h_off = h_sup if random() < .5 else 0
|
||||||
w_off = w_sup if random() < .5 else 0
|
w_off = w_sup if random() < .5 else 0
|
||||||
return h_sup, w_sup, h_off, w_off
|
return h_sup, w_sup, h_off, w_off
|
||||||
|
@ -149,6 +192,12 @@ class Generator:
|
||||||
@staticmethod
|
@staticmethod
|
||||||
def build_door(room: List[List[Tile]], y: int, x: int,
|
def build_door(room: List[List[Tile]], y: int, x: int,
|
||||||
dy: int, dx: int, length: int) -> bool:
|
dy: int, dx: int, length: int) -> bool:
|
||||||
|
"""
|
||||||
|
Tries to build the exit from the room at given coordinates
|
||||||
|
Depending on parameter length, it will either attempt to build a
|
||||||
|
simple door, or a long corridor. Return value is a boolean
|
||||||
|
signifying whether or not the exit was successfully built
|
||||||
|
"""
|
||||||
rh, rw = len(room), len(room[0])
|
rh, rw = len(room), len(room[0])
|
||||||
# verify we are pointing away from a floor tile
|
# verify we are pointing away from a floor tile
|
||||||
if not(0 <= y - dy < rh and 0 <= x - dx < rw) \
|
if not(0 <= y - dy < rh and 0 <= x - dx < rw) \
|
||||||
|
@ -160,6 +209,7 @@ class Generator:
|
||||||
if 0 <= ny < rh and 0 <= nx < rw \
|
if 0 <= ny < rh and 0 <= nx < rw \
|
||||||
and room[ny][nx] != Tile.EMPTY:
|
and room[ny][nx] != Tile.EMPTY:
|
||||||
return False
|
return False
|
||||||
|
# see if the path ahead is clear. needed in the case of non convex room
|
||||||
for i in range(length + 1):
|
for i in range(length + 1):
|
||||||
if room[y + i * dy][x + i * dx] != Tile.EMPTY:
|
if room[y + i * dy][x + i * dx] != Tile.EMPTY:
|
||||||
return False
|
return False
|
||||||
|
@ -170,6 +220,10 @@ class Generator:
|
||||||
@staticmethod
|
@staticmethod
|
||||||
def attach_door(room: List[List[Tile]], h_sup: int, w_sup: int,
|
def attach_door(room: List[List[Tile]], h_sup: int, w_sup: int,
|
||||||
h_off: int, w_off: int) -> Tuple[int, int, int, int]:
|
h_off: int, w_off: int) -> Tuple[int, int, int, int]:
|
||||||
|
"""
|
||||||
|
Attach an exit to the room. If extra space was allocated to
|
||||||
|
the grid, make sure a corridor is properly built
|
||||||
|
"""
|
||||||
length = h_sup + w_sup
|
length = h_sup + w_sup
|
||||||
dy, dx = 0, 0
|
dy, dx = 0, 0
|
||||||
if length > 0:
|
if length > 0:
|
||||||
|
@ -178,11 +232,13 @@ class Generator:
|
||||||
else:
|
else:
|
||||||
dx = -1 if w_off else 1
|
dx = -1 if w_off else 1
|
||||||
else:
|
else:
|
||||||
|
# determine door direction for rooms without corridors
|
||||||
if random() < .5:
|
if random() < .5:
|
||||||
dy = -1 if random() < .5 else 1
|
dy = -1 if random() < .5 else 1
|
||||||
else:
|
else:
|
||||||
dx = -1 if random() < .5 else 1
|
dx = -1 if random() < .5 else 1
|
||||||
|
|
||||||
|
# loop over all possible positions in a random order
|
||||||
rh, rw = len(room), len(room[0])
|
rh, rw = len(room), len(room[0])
|
||||||
yxs = [i for i in range(rh * rw)]
|
yxs = [i for i in range(rh * rw)]
|
||||||
shuffle(yxs)
|
shuffle(yxs)
|
||||||
|
@ -191,11 +247,18 @@ class Generator:
|
||||||
if room[y][x] == Tile.EMPTY and \
|
if room[y][x] == Tile.EMPTY and \
|
||||||
Generator.build_door(room, y, x, dy, dx, length):
|
Generator.build_door(room, y, x, dy, dx, length):
|
||||||
break
|
break
|
||||||
|
else:
|
||||||
|
return None, None
|
||||||
|
|
||||||
return y + length * dy, x + length * dx, dy, dx
|
return y + length * dy, x + length * dx, dy, dx
|
||||||
|
|
||||||
def create_circular_room(self, spawnable: bool = True) \
|
def create_circular_room(self, spawnable: bool = True) \
|
||||||
-> Tuple[List[List[Tile]], int, int, int, int]:
|
-> Tuple[List[List[Tile]], int, int, int, int]:
|
||||||
|
"""
|
||||||
|
Create and return as a tile grid a room that is circular in shape, and
|
||||||
|
may have a center, also circular hole
|
||||||
|
Also return door info so we know how to place the room in the level
|
||||||
|
"""
|
||||||
if random() < self.params["large_circular_room"]:
|
if random() < self.params["large_circular_room"]:
|
||||||
r = randint(5, 10)
|
r = randint(5, 10)
|
||||||
else:
|
else:
|
||||||
|
@ -222,8 +285,11 @@ class Generator:
|
||||||
else:
|
else:
|
||||||
room[-1].append(Tile.EMPTY)
|
room[-1].append(Tile.EMPTY)
|
||||||
|
|
||||||
|
# log all placed tiles as spawn positions
|
||||||
if spawnable:
|
if spawnable:
|
||||||
self.register_spawn_area(room)
|
self.register_spawn_area(room)
|
||||||
|
|
||||||
|
# attach exit
|
||||||
door_y, door_x, dy, dx = self.attach_door(room, h_sup, w_sup,
|
door_y, door_x, dy, dx = self.attach_door(room, h_sup, w_sup,
|
||||||
h_off, w_off)
|
h_off, w_off)
|
||||||
|
|
||||||
|
@ -231,9 +297,18 @@ class Generator:
|
||||||
|
|
||||||
def create_random_room(self, spawnable: bool = True) \
|
def create_random_room(self, spawnable: bool = True) \
|
||||||
-> Tuple[List[list], int, int, int, int]:
|
-> Tuple[List[list], int, int, int, int]:
|
||||||
|
"""
|
||||||
|
Randomly select a room shape and return one such room along with its
|
||||||
|
door info. Set spawnable to False is the room should be marked as a
|
||||||
|
potential spawning region on the map
|
||||||
|
"""
|
||||||
return self.create_circular_room()
|
return self.create_circular_room()
|
||||||
|
|
||||||
def register_spawn_area(self, area: List[List[Tile]]) -> None:
|
def register_spawn_area(self, area: List[List[Tile]]) -> None:
|
||||||
|
"""
|
||||||
|
Register all floor positions relative to the input grid
|
||||||
|
for later use
|
||||||
|
"""
|
||||||
spawn_positions = []
|
spawn_positions = []
|
||||||
for y, line in enumerate(area):
|
for y, line in enumerate(area):
|
||||||
for x, tile in enumerate(line):
|
for x, tile in enumerate(line):
|
||||||
|
@ -242,12 +317,27 @@ class Generator:
|
||||||
self.queued_area = spawn_positions
|
self.queued_area = spawn_positions
|
||||||
|
|
||||||
def update_spawnable(self, y: int, x: int) -> None:
|
def update_spawnable(self, y: int, x: int) -> None:
|
||||||
|
"""
|
||||||
|
Convert previous spawn positions relative to the room grid to actual
|
||||||
|
actual spawn positions on the level grid, using the position of the
|
||||||
|
top left corner of the room on the level, then log them as a
|
||||||
|
spawnable region
|
||||||
|
"""
|
||||||
|
if self.queued_area != None:
|
||||||
|
translated_area = [[y+ry, x+rx] for ry, rx in self.queued_area]
|
||||||
|
self.spawn_areas.append(translated_area)
|
||||||
|
self.queued_area = None
|
||||||
|
|
||||||
|
def populate(self, rv: Map) -> None:
|
||||||
|
"""
|
||||||
|
Populate every spawnable area with some randomly chosen, randomly
|
||||||
|
placed entity
|
||||||
|
"""
|
||||||
if self.queued_area is not None:
|
if self.queued_area is not None:
|
||||||
translated_area = [[y + ry, x + rx] for ry, rx in self.queued_area]
|
translated_area = [[y + ry, x + rx] for ry, rx in self.queued_area]
|
||||||
self.spawn_areas.append(translated_area)
|
self.spawn_areas.append(translated_area)
|
||||||
self.queued_area = None
|
self.queued_area = None
|
||||||
|
|
||||||
def populate(self, rv: Map) -> None:
|
|
||||||
min_c, max_c = self.params["spawn_per_region"]
|
min_c, max_c = self.params["spawn_per_region"]
|
||||||
for region in self.spawn_areas:
|
for region in self.spawn_areas:
|
||||||
entity_count = randint(min_c, max_c)
|
entity_count = randint(min_c, max_c)
|
||||||
|
@ -259,6 +349,10 @@ class Generator:
|
||||||
rv.add_entity(entity)
|
rv.add_entity(entity)
|
||||||
|
|
||||||
def run(self) -> Map:
|
def run(self) -> Map:
|
||||||
|
"""
|
||||||
|
Using procedural generation, build and return a full map, populated
|
||||||
|
with entities
|
||||||
|
"""
|
||||||
height, width = self.params["height"], self.params["width"]
|
height, width = self.params["height"], self.params["width"]
|
||||||
level = [width * [Tile.EMPTY] for _ignored in range(height)]
|
level = [width * [Tile.EMPTY] for _ignored in range(height)]
|
||||||
|
|
||||||
|
@ -266,24 +360,30 @@ class Generator:
|
||||||
mem, self.params["corridor_chance"] = self.params["corridor_chance"], 0
|
mem, self.params["corridor_chance"] = self.params["corridor_chance"], 0
|
||||||
starting_room, _, _, _, _ = self.create_random_room(spawnable=False)
|
starting_room, _, _, _, _ = self.create_random_room(spawnable=False)
|
||||||
dim_v, dim_h = len(starting_room), len(starting_room[0])
|
dim_v, dim_h = len(starting_room), len(starting_room[0])
|
||||||
|
# because Generator.room_fits checks that the exit door is correctly
|
||||||
|
# placed, but the starting room has no exit door, we find a positoin
|
||||||
|
# manually
|
||||||
pos_y, pos_x = randint(0, height - dim_v - 1),\
|
pos_y, pos_x = randint(0, height - dim_v - 1),\
|
||||||
randint(0, width - dim_h - 1)
|
randint(0, width - dim_h - 1)
|
||||||
self.place_room(level, pos_y, pos_x, starting_room, 0, 0)
|
self.place_room(level, pos_y, pos_x, starting_room, 0, 0)
|
||||||
|
# remove the door that was placed
|
||||||
if starting_room[0][0] != Tile.FLOOR:
|
if starting_room[0][0] != Tile.FLOOR:
|
||||||
level[pos_y][pos_x] = Tile.EMPTY
|
level[pos_y][pos_x] = Tile.EMPTY
|
||||||
self.params["corridor_chance"] = mem
|
self.params["corridor_chance"] = mem
|
||||||
|
|
||||||
# find a starting position
|
# find a starting position for the player
|
||||||
sy, sx = randint(0, height - 1), randint(0, width - 1)
|
sy, sx = randint(0, height - 1), randint(0, width - 1)
|
||||||
while level[sy][sx] != Tile.FLOOR:
|
while level[sy][sx] != Tile.FLOOR:
|
||||||
sy, sx = randint(0, height - 1), randint(0, width - 1)
|
sy, sx = randint(0, height - 1), randint(0, width - 1)
|
||||||
level[sy][sx] = Tile.LADDER
|
level[sy][sx] = Tile.LADDER
|
||||||
|
|
||||||
# now we loop until we've tried enough, or we've added enough rooms
|
# now we loop until we're bored, or we've added enough rooms
|
||||||
tries, rooms_built = 0, 0
|
tries, rooms_built = 0, 0
|
||||||
while tries < self.params["tries"] \
|
while tries < self.params["tries"] \
|
||||||
and rooms_built < self.params["max_rooms"]:
|
and rooms_built < self.params["max_rooms"]:
|
||||||
|
|
||||||
|
# build a room, try to fit it everywhere in a random order, and
|
||||||
|
# place it at the first possible position
|
||||||
room, door_y, door_x, dy, dx = self.create_random_room()
|
room, door_y, door_x, dy, dx = self.create_random_room()
|
||||||
positions = [i for i in range(height * width)]
|
positions = [i for i in range(height * width)]
|
||||||
shuffle(positions)
|
shuffle(positions)
|
||||||
|
@ -298,6 +398,12 @@ class Generator:
|
||||||
|
|
||||||
# post-processing
|
# post-processing
|
||||||
self.place_walls(level)
|
self.place_walls(level)
|
||||||
|
|
||||||
|
# because when a room is placed, it leads to exactly one previously
|
||||||
|
# placed room, the level has a tree like structure with the starting
|
||||||
|
# room as the root
|
||||||
|
# to avoid boring player backtracking, we add some cycles to the room
|
||||||
|
# graph in post processing by placing additional corridors
|
||||||
tries, loops = 0, 0
|
tries, loops = 0, 0
|
||||||
while tries < self.params["loop_tries"] and \
|
while tries < self.params["loop_tries"] and \
|
||||||
loops < self.params["loop_max"]:
|
loops < self.params["loop_max"]:
|
||||||
|
|
Loading…
Reference in New Issue