Use Dijkstra algorithm to describe monster paths
This commit is contained in:
parent
2f3a03dbf7
commit
d08ff7061f
|
@ -17,20 +17,15 @@ class Monster(FightingEntity):
|
|||
target = entity
|
||||
break
|
||||
|
||||
if target:
|
||||
# A Dijkstra algorithm has ran that targets the player.
|
||||
# With that way, monsters can simply follow the path.
|
||||
# If they can't move and they are already close to the player,
|
||||
# They hit.
|
||||
if target and (self.y, self.x) in target.paths:
|
||||
# Move to target player
|
||||
y, x = self.vector(target)
|
||||
if abs(y) > abs(x): # Move vertically
|
||||
if y > 0:
|
||||
self.move_down()
|
||||
else:
|
||||
self.move_up()
|
||||
else: # Move horizontally
|
||||
if x > 0:
|
||||
self.move_right()
|
||||
else:
|
||||
self.move_left()
|
||||
if self.distance_squared(target) <= 1:
|
||||
next_y, next_x = target.paths[(self.y, self.x)]
|
||||
moved = self.check_move(next_y, next_x, True)
|
||||
if not moved and self.distance_squared(target) <= 1:
|
||||
self.hit(target)
|
||||
else:
|
||||
for _ in range(100):
|
||||
|
|
|
@ -1,4 +1,5 @@
|
|||
from random import randint
|
||||
from typing import Dict, Tuple
|
||||
|
||||
from ..interfaces import FightingEntity
|
||||
|
||||
|
@ -14,6 +15,7 @@ class Player(FightingEntity):
|
|||
level: int = 1
|
||||
current_xp: int = 0
|
||||
max_xp: int = 10
|
||||
paths: Dict[Tuple[int, int], Tuple[int, int]]
|
||||
|
||||
def move(self, y: int, x: int) -> None:
|
||||
"""
|
||||
|
@ -22,6 +24,7 @@ class Player(FightingEntity):
|
|||
super().move(y, x)
|
||||
self.map.currenty = y
|
||||
self.map.currentx = x
|
||||
self.recalculate_paths()
|
||||
|
||||
def level_up(self) -> None:
|
||||
"""
|
||||
|
@ -61,3 +64,26 @@ class Player(FightingEntity):
|
|||
self.add_xp(randint(3, 7))
|
||||
return True
|
||||
return super().check_move(y, x, move_if_possible)
|
||||
|
||||
def recalculate_paths(self) -> None:
|
||||
"""
|
||||
Use Dijkstra algorithm to calculate best paths
|
||||
for monsters to go to the player.
|
||||
"""
|
||||
queue = [(self.y, self.x)]
|
||||
visited = []
|
||||
predecessors = {}
|
||||
while queue:
|
||||
y, x = queue.pop(0)
|
||||
visited.append((y, x))
|
||||
for diff_y, diff_x in [(1, 0), (-1, 0), (0, 1), (0, -1)]:
|
||||
new_y, new_x = y + diff_y, x + diff_x
|
||||
if not 0 <= new_y < self.map.height or \
|
||||
not 0 <= new_x < self.map.width or \
|
||||
not self.map.tiles[y][x].can_walk() or \
|
||||
(new_y, new_x) in visited or \
|
||||
(new_y, new_x) in queue:
|
||||
continue
|
||||
predecessors[(new_y, new_x)] = (y, x)
|
||||
queue.append((new_y, new_x))
|
||||
self.paths = predecessors
|
||||
|
|
Loading…
Reference in New Issue