Merge branch 'map_generation' into 'doors'
# Conflicts: # squirrelbattle/mapgeneration/broguelike.py
This commit is contained in:
		| @@ -26,8 +26,11 @@ DEFAULT_PARAMS = { | |||||||
|     "spawn_per_region": [1, 2], |     "spawn_per_region": [1, 2], | ||||||
| } | } | ||||||
|  |  | ||||||
|  | def dist(level, y1, x1, y2, x2): | ||||||
| def dist(level: List[List[Tile]], y1: int, x1: int, y2: int, x2: int) -> int: |     """ | ||||||
|  |     Compute the minimum walking distance between points (y1, x1) and (y2, x2) on a Tile grid | ||||||
|  |     """ | ||||||
|  |     # simple breadth first search | ||||||
|     copy = [[t for t in row] for row in level] |     copy = [[t for t in row] for row in level] | ||||||
|     dist = -1 |     dist = -1 | ||||||
|     queue, next_queue = [[y1, x1]], [0] |     queue, next_queue = [[y1, x1]], [0] | ||||||
| @@ -56,12 +59,19 @@ class Generator: | |||||||
|     def room_fits(level: List[List[Tile]], y: int, x: int, |     def room_fits(level: List[List[Tile]], y: int, x: int, | ||||||
|                   room: List[List[Tile]], door_y: int, door_x: int, |                   room: List[List[Tile]], door_y: int, door_x: int, | ||||||
|                   dy: int, dx: int) -> bool: |                   dy: int, dx: int) -> bool: | ||||||
|  |         """ | ||||||
|  |         Using point (door_y, door_x) in the room as a reference and placing it  | ||||||
|  |         over point (y, x) in the level, returns whether or not the room fits | ||||||
|  |         here  | ||||||
|  |         """ | ||||||
|         lh, lw = len(level), len(level[0]) |         lh, lw = len(level), len(level[0]) | ||||||
|         rh, rw = len(room), len(room[0]) |         rh, rw = len(room), len(room[0]) | ||||||
|         if not(0 < y + dy < lh and 0 < x + dx < lw): |         if not(0 < y + dy < lh and 0 < x + dx < lw): | ||||||
|             return False |             return False | ||||||
|  |         # door must be placed on an empty tile, and point into a floor tile | ||||||
|         if level[y][x] != Tile.EMPTY or level[y + dy][x + dx] != Tile.FLOOR: |         if level[y][x] != Tile.EMPTY or level[y + dy][x + dx] != Tile.FLOOR: | ||||||
|             return False |             return False | ||||||
|  |         # now we verify floor tiles in both grids do not overlap | ||||||
|         for ry in range(rh): |         for ry in range(rh): | ||||||
|             for rx in range(rw): |             for rx in range(rw): | ||||||
|                 if room[ry][rx] == Tile.FLOOR: |                 if room[ry][rx] == Tile.FLOOR: | ||||||
| @@ -82,6 +92,10 @@ class Generator: | |||||||
|     @staticmethod |     @staticmethod | ||||||
|     def place_room(level: List[List[Tile]], y: int, x: int, |     def place_room(level: List[List[Tile]], y: int, x: int, | ||||||
|                    room: List[List[Tile]], door_y: int, door_x: int) -> None: |                    room: List[List[Tile]], door_y: int, door_x: int) -> None: | ||||||
|  |         """ | ||||||
|  |         Mutates level in place to add the room. Placement is determined by  | ||||||
|  |         making (door_y, door_x) in the room correspond with (y, x) in the level | ||||||
|  |         """ | ||||||
|         rh, rw = len(room), len(room[0]) |         rh, rw = len(room), len(room[0]) | ||||||
|         level[y][x] = Tile.DOOR |         level[y][x] = Tile.DOOR | ||||||
|         for ry in range(rh): |         for ry in range(rh): | ||||||
| @@ -91,12 +105,20 @@ class Generator: | |||||||
|  |  | ||||||
|     @staticmethod |     @staticmethod | ||||||
|     def add_loop(level: List[List[Tile]], y: int, x: int) -> bool: |     def add_loop(level: List[List[Tile]], y: int, x: int) -> bool: | ||||||
|  |         """ | ||||||
|  |         Try to add a corridor between two far apart floor tiles, passing  | ||||||
|  |         through point (y, x). | ||||||
|  |         """ | ||||||
|         h, w = len(level), len(level[0]) |         h, w = len(level), len(level[0]) | ||||||
|  |          | ||||||
|         if level[y][x] != Tile.EMPTY: |         if level[y][x] != Tile.EMPTY: | ||||||
|             return False |             return False | ||||||
|         # loop over both axis |  | ||||||
|  |         # loop over both directions, trying to place both veritcal | ||||||
|  |         # and horizontal corridors | ||||||
|         for dx, dy in [[0, 1], [1, 0]]: |         for dx, dy in [[0, 1], [1, 0]]: | ||||||
|             # then we find two floor tiles, exiting if we ever move oob |             # then we find two floor tiles, one on each side of (y, x) | ||||||
|  |             # exiting if we don't find two (reach the edge of the map before) | ||||||
|             y1, x1, y2, x2 = y, x, y, x |             y1, x1, y2, x2 = y, x, y, x | ||||||
|             while x1 >= 0 and y1 >= 0 and level[y1][x1] == Tile.EMPTY: |             while x1 >= 0 and y1 >= 0 and level[y1][x1] == Tile.EMPTY: | ||||||
|                 y1, x1 = y1 - dy, x1 - dx |                 y1, x1 = y1 - dy, x1 - dx | ||||||
| @@ -105,9 +127,10 @@ class Generator: | |||||||
|             if not(0 <= x1 <= x2 < w and 0 <= y1 <= y2 < h): |             if not(0 <= x1 <= x2 < w and 0 <= y1 <= y2 < h): | ||||||
|                 continue |                 continue | ||||||
|  |  | ||||||
|             # if adding the path would make the two tiles significantly closer |  | ||||||
|             # and its sides don't touch already placed terrain, build it |  | ||||||
|             def verify_sides() -> bool: |             def verify_sides() -> bool: | ||||||
|  |                 # switching up dy and dx here pivots the axis, so  | ||||||
|  |                 # (y+dx, x+dy) and (y-dx, x-dy) are the tiles adjacent to  | ||||||
|  |                 # (y, x), but not on the original axis | ||||||
|                 for delta_x, delta_y in [[dy, dx], [-dy, -dx]]: |                 for delta_x, delta_y in [[dy, dx], [-dy, -dx]]: | ||||||
|                     for i in range(1, y2 - y1 + x2 - x1): |                     for i in range(1, y2 - y1 + x2 - x1): | ||||||
|                         if not (0 <= y1 + delta_y + i * dy < h |                         if not (0 <= y1 + delta_y + i * dy < h | ||||||
| @@ -117,6 +140,8 @@ class Generator: | |||||||
|                                 .can_walk(): |                                 .can_walk(): | ||||||
|                             return False |                             return False | ||||||
|                 return True |                 return True | ||||||
|  |             # if adding the path would make the two tiles significantly closer | ||||||
|  |             # and its sides don't touch already placed terrain, build it | ||||||
|             if dist(level, y1, x1, y2, x2) < 20 and verify_sides(): |             if dist(level, y1, x1, y2, x2) < 20 and verify_sides(): | ||||||
|                 y, x = y1 + dy, x1 + dx |                 y, x = y1 + dy, x1 + dx | ||||||
|                 while level[y][x] == Tile.EMPTY: |                 while level[y][x] == Tile.EMPTY: | ||||||
| @@ -127,6 +152,10 @@ class Generator: | |||||||
|  |  | ||||||
|     @staticmethod |     @staticmethod | ||||||
|     def place_walls(level: List[List[Tile]]) -> None: |     def place_walls(level: List[List[Tile]]) -> None: | ||||||
|  |         """ | ||||||
|  |         Place wall tiles on every empty tile that is adjacent (in the largest | ||||||
|  |         sense), to a floor tile | ||||||
|  |         """ | ||||||
|         h, w = len(level), len(level[0]) |         h, w = len(level), len(level[0]) | ||||||
|         for y in range(h): |         for y in range(h): | ||||||
|             for x in range(w): |             for x in range(w): | ||||||
| @@ -136,11 +165,25 @@ class Generator: | |||||||
|                             level[ny][nx] = Tile.WALL |                             level[ny][nx] = Tile.WALL | ||||||
|  |  | ||||||
|     def corr_meta_info(self) -> Tuple[int, int, int, int]: |     def corr_meta_info(self) -> Tuple[int, int, int, int]: | ||||||
|  |         """ | ||||||
|  |         Return info about the extra grid space that should be allocated for the | ||||||
|  |         room, and where the room should be built along this extra grid space. | ||||||
|  |         Because grids are usually thight around the room, this gives us extra | ||||||
|  |         place to add a corridor later. Corridor length and orientation is | ||||||
|  |         implicitly derived from this info. | ||||||
|  |  | ||||||
|  |         h_sup and w_sup represent the extra needed space along each axis, | ||||||
|  |         and h_off and w_off are the offset at which to build the room | ||||||
|  |         """ | ||||||
|         if random() < self.params["corridor_chance"]: |         if random() < self.params["corridor_chance"]: | ||||||
|             h_sup = randint(self.params["min_v_corr"], |             h_sup = randint(self.params["min_v_corr"], | ||||||
|                             self.params["max_v_corr"]) if random() < .5 else 0 |                             self.params["max_v_corr"]) if random() < .5 else 0 | ||||||
|  |             # we only allow extra space allocation along one axis, | ||||||
|  |             # because there won't more than one exit corridor | ||||||
|             w_sup = 0 if h_sup else randint(self.params["min_h_corr"], |             w_sup = 0 if h_sup else randint(self.params["min_h_corr"], | ||||||
|                                             self.params["max_h_corr"]) |                                             self.params["max_h_corr"]) | ||||||
|  |             # implicitly choose which direction along the axis | ||||||
|  |             # the corridor will be pointing to | ||||||
|             h_off = h_sup if random() < .5 else 0 |             h_off = h_sup if random() < .5 else 0 | ||||||
|             w_off = w_sup if random() < .5 else 0 |             w_off = w_sup if random() < .5 else 0 | ||||||
|             return h_sup, w_sup, h_off, w_off |             return h_sup, w_sup, h_off, w_off | ||||||
| @@ -149,6 +192,12 @@ class Generator: | |||||||
|     @staticmethod |     @staticmethod | ||||||
|     def build_door(room: List[List[Tile]], y: int, x: int, |     def build_door(room: List[List[Tile]], y: int, x: int, | ||||||
|                    dy: int, dx: int, length: int) -> bool: |                    dy: int, dx: int, length: int) -> bool: | ||||||
|  |         """ | ||||||
|  |         Tries to build the exit from the room at given coordinates | ||||||
|  |         Depending on parameter length, it will either attempt to build a  | ||||||
|  |         simple door, or a long corridor.  Return value is a boolean  | ||||||
|  |         signifying whether or not the exit was successfully built | ||||||
|  |         """ | ||||||
|         rh, rw = len(room), len(room[0]) |         rh, rw = len(room), len(room[0]) | ||||||
|         # verify we are pointing away from a floor tile |         # verify we are pointing away from a floor tile | ||||||
|         if not(0 <= y - dy < rh and 0 <= x - dx < rw) \ |         if not(0 <= y - dy < rh and 0 <= x - dx < rw) \ | ||||||
| @@ -160,6 +209,7 @@ class Generator: | |||||||
|             if 0 <= ny < rh and 0 <= nx < rw \ |             if 0 <= ny < rh and 0 <= nx < rw \ | ||||||
|                     and room[ny][nx] != Tile.EMPTY: |                     and room[ny][nx] != Tile.EMPTY: | ||||||
|                 return False |                 return False | ||||||
|  |         # see if the path ahead is clear. needed in the case of non convex room | ||||||
|         for i in range(length + 1): |         for i in range(length + 1): | ||||||
|             if room[y + i * dy][x + i * dx] != Tile.EMPTY: |             if room[y + i * dy][x + i * dx] != Tile.EMPTY: | ||||||
|                 return False |                 return False | ||||||
| @@ -170,6 +220,10 @@ class Generator: | |||||||
|     @staticmethod |     @staticmethod | ||||||
|     def attach_door(room: List[List[Tile]], h_sup: int, w_sup: int, |     def attach_door(room: List[List[Tile]], h_sup: int, w_sup: int, | ||||||
|                     h_off: int, w_off: int) -> Tuple[int, int, int, int]: |                     h_off: int, w_off: int) -> Tuple[int, int, int, int]: | ||||||
|  |         """ | ||||||
|  |         Attach an exit to the room. If extra space was allocated to | ||||||
|  |         the grid, make sure a corridor is properly built | ||||||
|  |         """ | ||||||
|         length = h_sup + w_sup |         length = h_sup + w_sup | ||||||
|         dy, dx = 0, 0 |         dy, dx = 0, 0 | ||||||
|         if length > 0: |         if length > 0: | ||||||
| @@ -178,11 +232,13 @@ class Generator: | |||||||
|             else: |             else: | ||||||
|                 dx = -1 if w_off else 1 |                 dx = -1 if w_off else 1 | ||||||
|         else: |         else: | ||||||
|  |             # determine door direction for rooms without corridors | ||||||
|             if random() < .5: |             if random() < .5: | ||||||
|                 dy = -1 if random() < .5 else 1 |                 dy = -1 if random() < .5 else 1 | ||||||
|             else: |             else: | ||||||
|                 dx = -1 if random() < .5 else 1 |                 dx = -1 if random() < .5 else 1 | ||||||
|  |  | ||||||
|  |         # loop over all possible positions in a random order | ||||||
|         rh, rw = len(room), len(room[0]) |         rh, rw = len(room), len(room[0]) | ||||||
|         yxs = [i for i in range(rh * rw)] |         yxs = [i for i in range(rh * rw)] | ||||||
|         shuffle(yxs) |         shuffle(yxs) | ||||||
| @@ -191,11 +247,18 @@ class Generator: | |||||||
|             if room[y][x] == Tile.EMPTY and \ |             if room[y][x] == Tile.EMPTY and \ | ||||||
|                     Generator.build_door(room, y, x, dy, dx, length): |                     Generator.build_door(room, y, x, dy, dx, length): | ||||||
|                 break |                 break | ||||||
|  |         else: | ||||||
|  |             return None, None | ||||||
|  |  | ||||||
|         return y + length * dy, x + length * dx, dy, dx |         return y + length * dy, x + length * dx, dy, dx | ||||||
|  |  | ||||||
|     def create_circular_room(self, spawnable: bool = True) \ |     def create_circular_room(self, spawnable: bool = True) \ | ||||||
|             -> Tuple[List[List[Tile]], int, int, int, int]: |             -> Tuple[List[List[Tile]], int, int, int, int]: | ||||||
|  |         """ | ||||||
|  |         Create and return as a tile grid a room that is circular in shape, and  | ||||||
|  |         may have a center, also circular hole | ||||||
|  |         Also return door info so we know how to place the room in the level | ||||||
|  |         """ | ||||||
|         if random() < self.params["large_circular_room"]: |         if random() < self.params["large_circular_room"]: | ||||||
|             r = randint(5, 10) |             r = randint(5, 10) | ||||||
|         else: |         else: | ||||||
| @@ -222,8 +285,11 @@ class Generator: | |||||||
|                 else: |                 else: | ||||||
|                     room[-1].append(Tile.EMPTY) |                     room[-1].append(Tile.EMPTY) | ||||||
|  |  | ||||||
|  |         # log all placed tiles as spawn positions | ||||||
|         if spawnable: |         if spawnable: | ||||||
|             self.register_spawn_area(room) |             self.register_spawn_area(room) | ||||||
|  |  | ||||||
|  |         # attach exit | ||||||
|         door_y, door_x, dy, dx = self.attach_door(room, h_sup, w_sup, |         door_y, door_x, dy, dx = self.attach_door(room, h_sup, w_sup, | ||||||
|                                                   h_off, w_off) |                                                   h_off, w_off) | ||||||
|  |  | ||||||
| @@ -231,9 +297,18 @@ class Generator: | |||||||
|  |  | ||||||
|     def create_random_room(self, spawnable: bool = True) \ |     def create_random_room(self, spawnable: bool = True) \ | ||||||
|             -> Tuple[List[list], int, int, int, int]: |             -> Tuple[List[list], int, int, int, int]: | ||||||
|  |         """ | ||||||
|  |         Randomly select a room shape and return one such room along with its  | ||||||
|  |         door info. Set spawnable to False is the room should be marked as a | ||||||
|  |         potential spawning region on the map | ||||||
|  |         """ | ||||||
|         return self.create_circular_room() |         return self.create_circular_room() | ||||||
|  |  | ||||||
|     def register_spawn_area(self, area: List[List[Tile]]) -> None: |     def register_spawn_area(self, area: List[List[Tile]]) -> None: | ||||||
|  |         """ | ||||||
|  |         Register all floor positions relative to the input grid | ||||||
|  |         for later use | ||||||
|  |         """ | ||||||
|         spawn_positions = [] |         spawn_positions = [] | ||||||
|         for y, line in enumerate(area): |         for y, line in enumerate(area): | ||||||
|             for x, tile in enumerate(line): |             for x, tile in enumerate(line): | ||||||
| @@ -242,12 +317,27 @@ class Generator: | |||||||
|         self.queued_area = spawn_positions |         self.queued_area = spawn_positions | ||||||
|  |  | ||||||
|     def update_spawnable(self, y: int, x: int) -> None: |     def update_spawnable(self, y: int, x: int) -> None: | ||||||
|         if self.queued_area is not None: |         """ | ||||||
|  |         Convert previous spawn positions relative to the room grid to actual | ||||||
|  |         actual spawn positions on the level grid, using the position of the  | ||||||
|  |         top left corner of the room on the level, then log them as a  | ||||||
|  |         spawnable region | ||||||
|  |         """ | ||||||
|  |         if self.queued_area != None: | ||||||
|             translated_area = [[y+ry, x+rx] for ry, rx in self.queued_area] |             translated_area = [[y+ry, x+rx] for ry, rx in self.queued_area] | ||||||
|             self.spawn_areas.append(translated_area) |             self.spawn_areas.append(translated_area) | ||||||
|         self.queued_area = None |         self.queued_area = None | ||||||
|  |  | ||||||
|     def populate(self, rv: Map) -> None: |     def populate(self, rv: Map) -> None: | ||||||
|  |         """ | ||||||
|  |         Populate every spawnable area with some randomly chosen, randomly | ||||||
|  |         placed entity | ||||||
|  |         """ | ||||||
|  |         if self.queued_area is not None: | ||||||
|  |             translated_area = [[y + ry, x + rx] for ry, rx in self.queued_area] | ||||||
|  |             self.spawn_areas.append(translated_area) | ||||||
|  |         self.queued_area = None | ||||||
|  |  | ||||||
|         min_c, max_c = self.params["spawn_per_region"] |         min_c, max_c = self.params["spawn_per_region"] | ||||||
|         for region in self.spawn_areas: |         for region in self.spawn_areas: | ||||||
|             entity_count = randint(min_c, max_c) |             entity_count = randint(min_c, max_c) | ||||||
| @@ -259,6 +349,10 @@ class Generator: | |||||||
|                 rv.add_entity(entity) |                 rv.add_entity(entity) | ||||||
|  |  | ||||||
|     def run(self) -> Map: |     def run(self) -> Map: | ||||||
|  |         """ | ||||||
|  |         Using procedural generation, build and return a full map, populated | ||||||
|  |         with entities | ||||||
|  |         """ | ||||||
|         height, width = self.params["height"], self.params["width"] |         height, width = self.params["height"], self.params["width"] | ||||||
|         level = [width * [Tile.EMPTY] for _ignored in range(height)] |         level = [width * [Tile.EMPTY] for _ignored in range(height)] | ||||||
|  |  | ||||||
| @@ -266,24 +360,30 @@ class Generator: | |||||||
|         mem, self.params["corridor_chance"] = self.params["corridor_chance"], 0 |         mem, self.params["corridor_chance"] = self.params["corridor_chance"], 0 | ||||||
|         starting_room, _, _, _, _ = self.create_random_room(spawnable=False) |         starting_room, _, _, _, _ = self.create_random_room(spawnable=False) | ||||||
|         dim_v, dim_h = len(starting_room), len(starting_room[0]) |         dim_v, dim_h = len(starting_room), len(starting_room[0]) | ||||||
|  |         # because Generator.room_fits checks that the exit door is correctly | ||||||
|  |         # placed, but the starting room has no exit door, we find a positoin | ||||||
|  |         # manually | ||||||
|         pos_y, pos_x = randint(0, height - dim_v - 1),\ |         pos_y, pos_x = randint(0, height - dim_v - 1),\ | ||||||
|             randint(0, width - dim_h - 1) |             randint(0, width - dim_h - 1) | ||||||
|         self.place_room(level, pos_y, pos_x, starting_room, 0, 0) |         self.place_room(level, pos_y, pos_x, starting_room, 0, 0) | ||||||
|  |         # remove the door that was placed | ||||||
|         if starting_room[0][0] != Tile.FLOOR: |         if starting_room[0][0] != Tile.FLOOR: | ||||||
|             level[pos_y][pos_x] = Tile.EMPTY |             level[pos_y][pos_x] = Tile.EMPTY | ||||||
|         self.params["corridor_chance"] = mem |         self.params["corridor_chance"] = mem | ||||||
|  |  | ||||||
|         # find a starting position |         # find a starting position for the player | ||||||
|         sy, sx = randint(0, height - 1), randint(0, width - 1) |         sy, sx = randint(0, height - 1), randint(0, width - 1) | ||||||
|         while level[sy][sx] != Tile.FLOOR: |         while level[sy][sx] != Tile.FLOOR: | ||||||
|             sy, sx = randint(0, height - 1), randint(0, width - 1) |             sy, sx = randint(0, height - 1), randint(0, width - 1) | ||||||
|         level[sy][sx] = Tile.LADDER |         level[sy][sx] = Tile.LADDER | ||||||
|  |  | ||||||
|         # now we loop until we've tried enough, or we've added enough rooms |         # now we loop until we're bored, or we've added enough rooms | ||||||
|         tries, rooms_built = 0, 0 |         tries, rooms_built = 0, 0 | ||||||
|         while tries < self.params["tries"] \ |         while tries < self.params["tries"] \ | ||||||
|                 and rooms_built < self.params["max_rooms"]: |                 and rooms_built < self.params["max_rooms"]: | ||||||
|  |  | ||||||
|  |             # build a room, try to fit it everywhere in a random order, and | ||||||
|  |             # place it at the first possible position | ||||||
|             room, door_y, door_x, dy, dx = self.create_random_room() |             room, door_y, door_x, dy, dx = self.create_random_room() | ||||||
|             positions = [i for i in range(height * width)] |             positions = [i for i in range(height * width)] | ||||||
|             shuffle(positions) |             shuffle(positions) | ||||||
| @@ -298,6 +398,12 @@ class Generator: | |||||||
|  |  | ||||||
|         # post-processing |         # post-processing | ||||||
|         self.place_walls(level) |         self.place_walls(level) | ||||||
|  |  | ||||||
|  |         # because when a room is placed, it leads to exactly one previously | ||||||
|  |         # placed room, the level has a tree like structure with the starting | ||||||
|  |         # room as the root | ||||||
|  |         # to avoid boring player backtracking, we add some cycles to the room | ||||||
|  |         # graph in post processing by placing additional corridors | ||||||
|         tries, loops = 0, 0 |         tries, loops = 0, 0 | ||||||
|         while tries < self.params["loop_tries"] and \ |         while tries < self.params["loop_tries"] and \ | ||||||
|                 loops < self.params["loop_max"]: |                 loops < self.params["loop_max"]: | ||||||
|   | |||||||
		Reference in New Issue
	
	Block a user