Add presentation
Signed-off-by: Yohann D'ANELLO <ynerant@crans.org>
This commit is contained in:
parent
b1832fc527
commit
2df039f2bd
|
@ -1,4 +1,8 @@
|
|||
*.aux
|
||||
*.log
|
||||
*.nav
|
||||
*.nt
|
||||
*.out
|
||||
*.pdf
|
||||
*.snm
|
||||
*.toc
|
||||
|
|
|
@ -0,0 +1,156 @@
|
|||
\documentclass[aspectratio=169]{beamer}
|
||||
|
||||
\usepackage[utf8]{inputenc}
|
||||
\usepackage[T1]{fontenc}
|
||||
\usepackage[english]{babel}
|
||||
|
||||
\usetheme{metropolis}
|
||||
|
||||
\title{Keys in Graphs}
|
||||
\author{Yohann D'Anello}
|
||||
\date{January, $31^{\text{st}}$ 2022}
|
||||
|
||||
\begin{document}
|
||||
|
||||
\begin{frame}
|
||||
\maketitle
|
||||
\end{frame}
|
||||
|
||||
\begin{frame}{Project goal}
|
||||
This project aims to find Graph keys, as defined in
|
||||
\footnote{\url{https://www.researchgate.net/publication/283189709_Keys_for_graphs}}.
|
||||
A Graph Key describes the relations that an object can have with their keys, and
|
||||
what relations these involved objects can have.
|
||||
\end{frame}
|
||||
|
||||
\begin{frame}{Graph key example}
|
||||
\begin{center}
|
||||
\begin{tikzpicture}[y=3cm]
|
||||
\node[draw] (0) at (0, 0) {Book};
|
||||
\node[] (00) at (-3, -1) {x};
|
||||
\node[draw] (01) at (-1, -1) {Person};
|
||||
\node[] (02) at (1, -1) {y};
|
||||
\node[draw] (03) at (3, -1) {Company};
|
||||
\node[draw] (010) at (-2, -2) {Country};
|
||||
\node[] (011) at (0, -2) {z};
|
||||
\node[] (030) at (3, -2) {t};
|
||||
\draw[->] (0) -- (00) node[midway,above,sloped] {title};
|
||||
\draw[->] (0) -- (01) node[midway,above,sloped] {author};
|
||||
\draw[->] (0) -- (02) node[midway,above,sloped] {subtitle};
|
||||
\draw[->] (0) -- (03) node[midway,above,sloped] {publisher};
|
||||
\draw[->] (01) -- (010) node[midway,above,sloped] {nationality};
|
||||
\draw[->] (01) -- (011) node[midway,above,sloped] {last name};
|
||||
\draw[->] (03) -- (030) node[midway,above,sloped] {identifier};
|
||||
\end{tikzpicture}
|
||||
\end{center}
|
||||
\end{frame}
|
||||
|
||||
\begin{frame}{How generate keys?}
|
||||
To generate these keys, one suggests to find $n$-almost keys using SAKey,
|
||||
then to explore involved relations that define a domain and a range, and to
|
||||
explore recursively the related fields.
|
||||
|
||||
\begin{itemize}
|
||||
\item Choose a dataset
|
||||
\item Use \emph{SAKey} to find $n$-almost keys in the dataset
|
||||
\item Find extracted relations that define a domain and a range
|
||||
\item Explore recursively graph keys of discovered related items
|
||||
\item Concatene these graphs
|
||||
\end{itemize}
|
||||
\end{frame}
|
||||
|
||||
\begin{frame}{Implementation}
|
||||
\begin{itemize}
|
||||
\item Simple script using Python 3.9+
|
||||
\item Libraries: \emph{beautifulsoup4}, \emph{lxml} (ontology parsing),
|
||||
\emph{SPARQLWrapper} (for SPARQL queries)
|
||||
\item Uses the given binary for SAKey
|
||||
\item Source code: \url{https://gitlab.crans.org/ynerant/graph-keys}
|
||||
\end{itemize}
|
||||
\end{frame}
|
||||
|
||||
\begin{frame}{Algorithm}
|
||||
\begin{itemize}
|
||||
\item Input: class name $c$, threshold $n$, query limit $l$, recursivity limit $r$
|
||||
\item Query DBPedia to get $l$ first rows of triples that describe the class $c$
|
||||
\item Use \emph{SAKey} to find $n$-almost keys in the computed dataset of $l$ triples
|
||||
\item Parse relations and filter those define a range
|
||||
\item Process recursively on each discovered range with decrementing $r$, until $r$ is equal to $0$
|
||||
\item Compute all given graphs
|
||||
\item Display them
|
||||
\end{itemize}
|
||||
\end{frame}
|
||||
|
||||
\begin{frame}{Usage}
|
||||
\texttt{./main.py Library 5 -{}-limit 3000 -{}-recursion 3}
|
||||
\end{frame}
|
||||
|
||||
\begin{frame}{Difference with the given binary}
|
||||
\begin{itemize}
|
||||
\item Given material: linear
|
||||
\item Given datasets: concern only one type of data, impossible to explore more with these triples
|
||||
\item $\implies$ Choice to query DBPedia to get more data
|
||||
\end{itemize}
|
||||
\end{frame}
|
||||
|
||||
\begin{frame}{Discovered ranges}
|
||||
\begin{itemize}
|
||||
\item Example: we discovered that \texttt{[inCemetery, hasSize]} is a key for
|
||||
\emph{GraveMonument}
|
||||
\item Relation \texttt{inCemetery} has for domain \texttt{GraveMonument}
|
||||
and for range \texttt{Cemetery}
|
||||
\item We can now query data about cemeteries to get larger keys
|
||||
\end{itemize}
|
||||
|
||||
\begin{center}
|
||||
\begin{tikzpicture}[y=3cm]
|
||||
\node[draw] (0) at (0, 0) {GraveMonument};
|
||||
\node[draw] (1) at (-2, -1) {Cemetery};
|
||||
\node (2) at (2, -1) {x};
|
||||
|
||||
\draw[->] (0) -- (1) node[midway,above,sloped] {inCemetery};
|
||||
\draw[->] (0) -- (2) node[midway,above,sloped] {hasSize};
|
||||
\end{tikzpicture}
|
||||
\end{center}
|
||||
\end{frame}
|
||||
|
||||
\begin{frame}{Output example}
|
||||
\begin{figure}[H]
|
||||
\centering
|
||||
\begin{tikzpicture}[x=3cm]
|
||||
\node[draw] (0) at (0, 0) {Library};
|
||||
\pause
|
||||
\node[draw] (0-0) at (1, 0) {Place};
|
||||
\draw[->] (0) -- (0-0) node[midway,above,sloped] {location};
|
||||
\pause
|
||||
\node[draw] (0-0-0) at (2, 0) {City};
|
||||
\draw[->] (0-0) -- (0-0-0) node[midway,above,sloped] {capital};
|
||||
\pause
|
||||
\node[draw] (0-0-0-0) at (3, 0) {Image};
|
||||
\draw[->] (0-0-0) -- (0-0-0-0) node[midway,above,sloped] {thumbnail};
|
||||
\end{tikzpicture}
|
||||
\caption{Sample output of the program}
|
||||
\end{figure}
|
||||
\end{frame}
|
||||
|
||||
\begin{frame}{Limitations}
|
||||
\begin{itemize}
|
||||
\item Only few keys are well-typed (with a domain and/or a range)
|
||||
\item We only extend minimal $n$-almost keys
|
||||
\item We never generate minimal graph keys $\implies$ some keys could never be generated
|
||||
\item Lot of paths
|
||||
\end{itemize}
|
||||
\end{frame}
|
||||
|
||||
\begin{frame}{Further works}
|
||||
\begin{itemize}
|
||||
\item Generate graphs with leaves (easy)
|
||||
\item Explore triples of the form \texttt{?x ?r ?y} where we specify
|
||||
the class of \texttt{?y} instead of \texttt{?x}
|
||||
\item Explore relations that does not define any range (hard)
|
||||
\item Take into account the \texttt{sameAs} relation
|
||||
\item Find a way to generate more complex graphs
|
||||
\end{itemize}
|
||||
\end{frame}
|
||||
|
||||
\end{document}
|
Loading…
Reference in New Issue