Draw graphs
This commit is contained in:
parent
f438ae6c79
commit
eb754a30e5
100
algods/algods.py
100
algods/algods.py
|
@ -3,6 +3,7 @@ import unicodedata
|
|||
import sys
|
||||
from typing import Optional
|
||||
|
||||
from matplotlib import pyplot as plt
|
||||
import numpy as np
|
||||
|
||||
SHINGLE_SIZE = 5 # Known as k
|
||||
|
@ -31,6 +32,7 @@ def parse_args(argv: dict = None) -> argparse.Namespace:
|
|||
# which is the most expensive state.
|
||||
parser.add_argument('--progress', '-p', '--tqdm', action='store_true',
|
||||
help='Display progress bar while calculating signature matrix.')
|
||||
parser.add_argument('--graph', '-g', action='store_true', help="Draw graphs.")
|
||||
|
||||
return parser.parse_args(argv[1:])
|
||||
|
||||
|
@ -148,7 +150,7 @@ def compute_signature_matrix(shingles: np.ndarray, permutations_count: int, disp
|
|||
if display_tqdm:
|
||||
try:
|
||||
from tqdm import tqdm
|
||||
permutations_iterator = tqdm(permutations_iterator, unit="perm.")
|
||||
permutations_iterator = tqdm(permutations_iterator, unit="perm.", position=1)
|
||||
except ImportError:
|
||||
print("tqdm is not installed. Please install tqdm before using --tqdm option.")
|
||||
|
||||
|
@ -207,6 +209,19 @@ def find_candidate_pairs(signature: np.ndarray, bands: int, rows: int) -> set[tu
|
|||
return candidate_pairs
|
||||
|
||||
|
||||
def shingle_set(shingles: np.ndarray, doc_id: int) -> set[int]:
|
||||
"""
|
||||
Return the set of all shingle id from a document.
|
||||
To don't recompute multiple times this, this is cached.
|
||||
"""
|
||||
if not hasattr(shingle_set, '_cache'):
|
||||
shingle_set._cache = {}
|
||||
if doc_id not in shingle_set._cache:
|
||||
shingle_set._cache[doc_id] = set(x for x in range(len(shingles)) if shingles[x, doc_id])
|
||||
|
||||
return shingle_set._cache[doc_id]
|
||||
|
||||
|
||||
def jaccard_similarity(doc1: set, doc2: set) -> float:
|
||||
"""
|
||||
Compute jaccard similarity of two sets.
|
||||
|
@ -220,7 +235,7 @@ def jaccard_similarity(doc1: set, doc2: set) -> float:
|
|||
return len(inter) / len(union)
|
||||
|
||||
|
||||
def parse(stream, similarity: float, *, stats: bool = False, display_tqdm: bool = False) \
|
||||
def parse(stream, similarity: float, *, stats: bool = False, display_tqdm: bool = False, verbose: bool = True) \
|
||||
-> Optional[tuple[int, int, int, int]]:
|
||||
"""
|
||||
Given a stream of documents (separated by line feeds) and a similarity threshold,
|
||||
|
@ -234,7 +249,11 @@ def parse(stream, similarity: float, *, stats: bool = False, display_tqdm: bool
|
|||
|
||||
# Compute k-shingles
|
||||
shingles = compute_shingles(docs, SHINGLE_SIZE)
|
||||
return parse_shingles(docs, shingles, similarity, stats=stats, display_tqdm=display_tqdm, verbose=verbose)
|
||||
|
||||
|
||||
def parse_shingles(docs: list[str], shingles: np.ndarray, similarity: float, *, stats: bool = False,
|
||||
display_tqdm: bool = False, verbose: bool = True) -> Optional[tuple[int, int, int, int]]:
|
||||
# Compute best values for permutations count
|
||||
bands, rows = compute_optimal_matrix_size(similarity)
|
||||
# Compute signature matrix using MinHash
|
||||
|
@ -250,13 +269,13 @@ def parse(stream, similarity: float, *, stats: bool = False, display_tqdm: bool
|
|||
fp = 0
|
||||
|
||||
# For each document pair, compute true Jaccard similarity and display it
|
||||
shingles_set = [set(x for x in range(len(shingles)) if shingles[x, doc]) for doc in range(len(docs))]
|
||||
for doc_a, doc_b in candidate_pairs:
|
||||
# Compute true jaccard similarity
|
||||
shingles_a = shingles_set[doc_a]
|
||||
shingles_b = shingles_set[doc_b]
|
||||
shingles_a = shingle_set(shingles, doc_a)
|
||||
shingles_b = shingle_set(shingles, doc_b)
|
||||
d = jaccard_similarity(shingles_a, shingles_b)
|
||||
if d >= similarity:
|
||||
if verbose:
|
||||
print(f"{doc_a} {doc_b} {d:.06f}")
|
||||
tp += 1
|
||||
else:
|
||||
|
@ -270,8 +289,8 @@ def parse(stream, similarity: float, *, stats: bool = False, display_tqdm: bool
|
|||
for doc_a in range(len(docs)):
|
||||
for doc_b in range(doc_a + 1, len(docs)):
|
||||
# Compute true jaccard similarity
|
||||
shingles_a = shingles_set[doc_a]
|
||||
shingles_b = shingles_set[doc_b]
|
||||
shingles_a = shingle_set(shingles, doc_a)
|
||||
shingles_b = shingle_set(shingles, doc_b)
|
||||
d = jaccard_similarity(shingles_a, shingles_b)
|
||||
if d >= similarity and (doc_a, doc_b) not in candidate_pairs:
|
||||
fn += 1
|
||||
|
@ -285,6 +304,10 @@ def main():
|
|||
# Parse arguments from command line
|
||||
ns = parse_args()
|
||||
|
||||
if ns.graph:
|
||||
# Don't use the program to compute something
|
||||
return graph(ns.input, ns.progress)
|
||||
|
||||
if not (0 < ns.similarity <= 1):
|
||||
raise ValueError(f"Invalid similiarity value: {ns.similarity}")
|
||||
|
||||
|
@ -302,3 +325,66 @@ def main():
|
|||
fp_rate = fp / (fp + tn)
|
||||
print(f"True positive rate: {tp_rate:.06f}", file=sys.stderr)
|
||||
print(f"False positive rate: {fp_rate:.06f}", file=sys.stderr)
|
||||
|
||||
|
||||
def graph(stream, display_tqdm: bool = False) -> None:
|
||||
"""
|
||||
Draw statistic graphs about false-positive and true positive rates using matplotlib.
|
||||
"""
|
||||
docs = [line.rstrip('\n') for line in stream] # Read stream
|
||||
docs = [normalize(doc) for doc in docs] # Remove special characters and normalize accents
|
||||
|
||||
# Compute k-shingles
|
||||
shingles = compute_shingles(docs, SHINGLE_SIZE)
|
||||
|
||||
step = 0.05
|
||||
n = int(1 // step)
|
||||
|
||||
tps, fps, tns, fns = [], [], [], []
|
||||
|
||||
step_iterator = range(1, n + 1)
|
||||
if display_tqdm:
|
||||
from tqdm import tqdm
|
||||
step_iterator = tqdm(step_iterator, position=1)
|
||||
|
||||
for i in step_iterator:
|
||||
t = i * step
|
||||
tp, fp, tn, fn = parse_shingles(docs, shingles, t, stats=True, display_tqdm=display_tqdm, verbose=False)
|
||||
tps.append(tp)
|
||||
fps.append(fp)
|
||||
tns.append(tn)
|
||||
fns.append(fn)
|
||||
|
||||
tps = np.array(tps)
|
||||
fps = np.array(fps)
|
||||
tns = np.array(tns)
|
||||
fns = np.array(fns)
|
||||
|
||||
tps_rate = tps / (tps + fns)
|
||||
fps_rate = fps / (fps + tns)
|
||||
|
||||
print("tps = np.array(", tps, ")")
|
||||
print("fps = np.array(", fps, ")")
|
||||
print("tns = np.array(", tns, ")")
|
||||
print("fns = np.array(", fns, ")")
|
||||
|
||||
x_axis = step * np.array(range(1, n + 1))
|
||||
|
||||
plt.plot(x_axis, tps_rate, '*')
|
||||
plt.xlabel("Threshold value")
|
||||
plt.ylabel("True positive rate")
|
||||
plt.title("True positive rate per threshold value")
|
||||
plt.show()
|
||||
|
||||
plt.plot(x_axis, fps_rate, '*')
|
||||
plt.xlabel("Threshold value")
|
||||
plt.ylabel("False positive rate")
|
||||
plt.title("False positive rate per threshold value")
|
||||
plt.show()
|
||||
|
||||
plt.plot(x_axis, np.log(fps_rate), '*')
|
||||
plt.xlabel("Threshold value")
|
||||
plt.ylabel("False positive rate (log scale)")
|
||||
plt.title("False positive rate per threshold value (logarithmic scale)")
|
||||
|
||||
plt.show()
|
||||
|
|
Loading…
Reference in New Issue