algo-ds/algods/algods.py

88 lines
2.7 KiB
Python
Raw Normal View History

2021-10-08 13:13:52 +00:00
import argparse
2021-10-17 08:50:50 +00:00
import random
2021-10-15 12:36:47 +00:00
import unicodedata
2021-10-08 13:13:52 +00:00
import sys
2021-10-17 08:50:50 +00:00
import numpy as np
SHINGLE_SIZE = 5 # Known as k
PERMUTATIONS_COUNT = 3
2021-10-08 13:13:52 +00:00
def parse_args(argv: dict = None) -> argparse.Namespace:
if argv is None:
argv = sys.argv
parser = argparse.ArgumentParser(description='Exercise 1')
parser.add_argument('input', nargs='?', type=argparse.FileType('r'), help='Documents to read.', default=sys.stdin)
parser.add_argument('similarity', nargs='?', type=float, help='Similarity threshold.', default=0.05)
return parser.parse_args(argv[1:])
2021-10-15 12:36:47 +00:00
def normalize(doc: str) -> str:
"""
Remove accents from letters, remove non-ascii letters, keep only letters and digits.
"""
return ''.join(char for char in unicodedata.normalize(
'NFKD', doc.casefold().replace('æ', 'ae').replace('œ', 'oe'))
if unicodedata.category(char) in ['Lu', 'Ll', 'Nd']
).casefold().encode('ascii', 'ignore').decode('ascii')
2021-10-17 08:50:50 +00:00
def compute_shingles(docs: list[str], single_size: int) -> np.ndarray:
shingle_matrix = np.zeros((2, len(docs)))
2021-10-15 12:36:47 +00:00
shingle_id = {}
2021-10-17 08:50:50 +00:00
for doc_id, doc in enumerate(docs):
char_shing = [doc[i:i + single_size] for i in range(len(doc) - single_size + 1)]
2021-10-15 12:36:47 +00:00
for sh in char_shing:
if sh not in shingle_id:
2021-10-17 08:50:50 +00:00
shingle_id[sh] = len(shingle_id)
if shingle_id[sh] >= len(shingle_matrix):
# Extend matrix, double its size
shingle_matrix = np.append(shingle_matrix, np.zeros(shingle_matrix.shape), axis=0)
shingle_matrix[shingle_id[sh], doc_id] = 1
shingle_matrix = shingle_matrix[:len(shingle_id)]
return shingle_matrix
def min_hash(doc: str, perm: list[str]) -> str:
for d in perm:
if d in doc:
return d
def compute_signature_matrix(shingles: np.ndarray, permutations_count: int) -> np.ndarray:
permutation_matrix = np.zeros((permutations_count, len(shingles)))
for i in range(permutations_count):
permutation_matrix[i] = np.random.permutation(len(shingles))
return permutation_matrix @ shingles
2021-10-15 12:36:47 +00:00
def jaccard_similarity(doc1: set, doc2: set) -> float:
if not doc1 or not doc2:
return 0.0
inter = doc1.intersection(doc2)
union = doc1.union(doc2)
return len(inter) / len(union)
2021-10-08 13:13:52 +00:00
def parse(stream, similarity: float) -> None:
2021-10-15 12:36:47 +00:00
docs = [line.rstrip('\n') for line in stream]
docs = [normalize(doc) for doc in docs] # Remove special characters and normalize accents
2021-10-08 13:13:52 +00:00
2021-10-17 08:50:50 +00:00
shingles = compute_shingles(docs, SHINGLE_SIZE)
signature = compute_signature_matrix(shingles, PERMUTATIONS_COUNT)
2021-10-08 13:13:52 +00:00
2021-10-08 12:53:40 +00:00
def main():
2021-10-08 13:13:52 +00:00
ns = parse_args()
parse(ns.input, ns.similarity)