2021-10-08 13:13:52 +00:00
|
|
|
import argparse
|
2021-10-17 08:50:50 +00:00
|
|
|
import random
|
2021-10-15 12:36:47 +00:00
|
|
|
import unicodedata
|
2021-10-08 13:13:52 +00:00
|
|
|
import sys
|
2021-10-17 08:50:50 +00:00
|
|
|
|
|
|
|
import numpy as np
|
|
|
|
|
|
|
|
|
|
|
|
SHINGLE_SIZE = 5 # Known as k
|
|
|
|
PERMUTATIONS_COUNT = 3
|
2021-10-08 13:13:52 +00:00
|
|
|
|
|
|
|
|
|
|
|
def parse_args(argv: dict = None) -> argparse.Namespace:
|
|
|
|
if argv is None:
|
|
|
|
argv = sys.argv
|
|
|
|
|
|
|
|
parser = argparse.ArgumentParser(description='Exercise 1')
|
|
|
|
parser.add_argument('input', nargs='?', type=argparse.FileType('r'), help='Documents to read.', default=sys.stdin)
|
|
|
|
parser.add_argument('similarity', nargs='?', type=float, help='Similarity threshold.', default=0.05)
|
|
|
|
|
|
|
|
return parser.parse_args(argv[1:])
|
|
|
|
|
|
|
|
|
2021-10-15 12:36:47 +00:00
|
|
|
def normalize(doc: str) -> str:
|
|
|
|
"""
|
|
|
|
Remove accents from letters, remove non-ascii letters, keep only letters and digits.
|
|
|
|
"""
|
|
|
|
return ''.join(char for char in unicodedata.normalize(
|
|
|
|
'NFKD', doc.casefold().replace('æ', 'ae').replace('œ', 'oe'))
|
|
|
|
if unicodedata.category(char) in ['Lu', 'Ll', 'Nd']
|
|
|
|
).casefold().encode('ascii', 'ignore').decode('ascii')
|
|
|
|
|
|
|
|
|
2021-10-17 08:50:50 +00:00
|
|
|
def compute_shingles(docs: list[str], single_size: int) -> np.ndarray:
|
|
|
|
shingle_matrix = np.zeros((2, len(docs)))
|
2021-10-15 12:36:47 +00:00
|
|
|
shingle_id = {}
|
|
|
|
|
2021-10-17 08:50:50 +00:00
|
|
|
for doc_id, doc in enumerate(docs):
|
|
|
|
char_shing = [doc[i:i + single_size] for i in range(len(doc) - single_size + 1)]
|
2021-10-15 12:36:47 +00:00
|
|
|
for sh in char_shing:
|
|
|
|
if sh not in shingle_id:
|
2021-10-17 08:50:50 +00:00
|
|
|
shingle_id[sh] = len(shingle_id)
|
|
|
|
if shingle_id[sh] >= len(shingle_matrix):
|
|
|
|
# Extend matrix, double its size
|
|
|
|
shingle_matrix = np.append(shingle_matrix, np.zeros(shingle_matrix.shape), axis=0)
|
|
|
|
|
|
|
|
shingle_matrix[shingle_id[sh], doc_id] = 1
|
|
|
|
|
|
|
|
shingle_matrix = shingle_matrix[:len(shingle_id)]
|
|
|
|
|
|
|
|
return shingle_matrix
|
|
|
|
|
|
|
|
|
|
|
|
def min_hash(doc: str, perm: list[str]) -> str:
|
|
|
|
for d in perm:
|
|
|
|
if d in doc:
|
|
|
|
return d
|
|
|
|
|
|
|
|
|
|
|
|
def compute_signature_matrix(shingles: np.ndarray, permutations_count: int) -> np.ndarray:
|
|
|
|
permutation_matrix = np.zeros((permutations_count, len(shingles)))
|
|
|
|
for i in range(permutations_count):
|
|
|
|
permutation_matrix[i] = np.random.permutation(len(shingles))
|
|
|
|
|
|
|
|
return permutation_matrix @ shingles
|
2021-10-15 12:36:47 +00:00
|
|
|
|
|
|
|
|
|
|
|
def jaccard_similarity(doc1: set, doc2: set) -> float:
|
|
|
|
if not doc1 or not doc2:
|
|
|
|
return 0.0
|
|
|
|
|
|
|
|
inter = doc1.intersection(doc2)
|
|
|
|
union = doc1.union(doc2)
|
|
|
|
return len(inter) / len(union)
|
|
|
|
|
|
|
|
|
2021-10-08 13:13:52 +00:00
|
|
|
def parse(stream, similarity: float) -> None:
|
2021-10-15 12:36:47 +00:00
|
|
|
docs = [line.rstrip('\n') for line in stream]
|
|
|
|
docs = [normalize(doc) for doc in docs] # Remove special characters and normalize accents
|
2021-10-08 13:13:52 +00:00
|
|
|
|
2021-10-17 08:50:50 +00:00
|
|
|
shingles = compute_shingles(docs, SHINGLE_SIZE)
|
|
|
|
signature = compute_signature_matrix(shingles, PERMUTATIONS_COUNT)
|
2021-10-08 13:13:52 +00:00
|
|
|
|
|
|
|
|
2021-10-08 12:53:40 +00:00
|
|
|
def main():
|
2021-10-08 13:13:52 +00:00
|
|
|
ns = parse_args()
|
|
|
|
parse(ns.input, ns.similarity)
|